Efficient Multi-Resource, Multi-Unit VCG Auction

Liran Funaro Orna Agmon Ben-Yehuda Assaf Schuster

Department of Computer Science

International Conference on the Economic of Grids, Clouds, System, and Services (GECON)
September 17-19, 2019, Leeds, UK
The Resource-as-a-Service (RaaS) cloud is an elastic cloud model that allows clients to rent adjustable quantities of individual resources for short time intervals.

It is characterized by:
- Fine resource granularity
- Fine time granularity
- Market-driven resource pricing

More details in:
Resource Allocation via Auctions

- Infrastructure-as-a-Service (IaaS) providers have been using auctions to control congestion via preemptible virtual-machine (VM) instances for nearly a decade.
- A natural extension of this idea is to auction additional individual resources in an existing VM.
- VCG are appealing for this purpose, as they are:
 - **Truthful**: they incentivize clients to reveal their true valuation of the resources, which helps cloud providers accurately price their services.
 - Maximizing the **social welfare**: the aggregate valuation the clients assign to the chosen resource allocation.

More details in:

Each client rents a base resource bundle that is reserved for that client, then...
Each client rents a base resource bundle that is reserved for that client, then...

The host announces an auction every few seconds.
Resource Auction Protocol

Each client rents a base resource bundle that is reserved for that client, then...

The host announces an auction every few seconds

Each agent, representing the client, bids with a valuation for each quantity of additional bundle of resources — how much it is worth, subjectively
A client evaluates its benefit from each additional resource bundle.
A client evaluates its benefit from each additional resource bundle.
A client evaluates its benefit from each additional resource bundle.
A client evaluates its benefit from each additional resource bundle.
A client evaluates its benefit from each additional resource bundle.

- Client’s Valuation Function

![Graph showing valuation function]
A client evaluates its benefit from each additional resource bundle.
A client evaluates its benefit from each additional resource bundle. Its agent then submits all these valuations as its **valuation function**.
Each client rents a base resource bundle that is reserved for that client, then...

The host announces an auction every few seconds

Each agent, representing the client, bids with a valuation for each quantity of additional bundle of resources — how much it is worth, subjectively

The host solves an optimization problem: finding the allocation that maximize the social welfare
Each client rents a base resource bundle that is reserved for that client, then...

The host announces an auction every few seconds

Each agent, representing the client, bids with a valuation for each quantity of additional bundle of resources — how much it is worth, subjectively

The host solves an optimization problem: finding the allocation that maximize the social welfare

The host informs the agents of their allocation and charges them according to the exclusion-compensation principle
Exclusion-Compensation Principle

- **Exclusion-Compensation Principle**: Each guest pays for the damage it inflicted on the other guests in the system.
- The auctioneer must determine the social welfare that could be achieved when that winning agent is excluded from the auction.
Exclusion-Compensation Principle

- **Exclusion-Compensation Principle**: Each guest pays for the damage it inflicted on the other guests in the system.
- The auctioneer must determine the social welfare that could be achieved when that winning agent is excluded from the auction.

The good:

- The guests are **truthful**: they cannot improve their status by bidding a higher or a lower value.
- If the demand is low, clients can rent the additional resources for a very low price, which is financially beneficial to the clients.
Exclusion-Compensation Principle

- **Exclusion-Compensation Principle**: Each guest pays for the damage it inflicted on the other guests in the system.
- The auctioneer must determine the social welfare that could be achieved when that winning agent is excluded from the auction.

The good:
- The guests are **truthful**: they cannot improve their status by bidding a higher or a lower value.
- If the demand is low, clients can rent the additional resources for a very low price, which is financially beneficial to the clients.

The bad:
- The provider needs to repeat the optimization for each winning client, without its participation in the auction.
The Problem: Complexity

- Finding the optimal allocation has a high computational complexity

Existing solutions:

- Relaxing the problem's definition, e.g., only concave valuation functions (Lazar and Semret; Maillé and Tu; Agmon Ben-Yehuda, Posener, et al.)
- Unrealistic (Funaro, Agmon Ben-Yehuda, and Schuster; Ye ... Cameron and Singer)
- Known solutions only applicable to a single resource
- Approximation: non-optimal social welfare (Gao et al.; Akbar et al.; ... Hi, Michrafy, and Sbihi)
- Reduces the client's incentives to be truthful
- In turn further degrades from the optimal social welfare
- B&B: branch-and-bound algorithms (Ghassemi-Tari, Hendizadeh, and Hogg; ... Razzazi and Ghasemi; Gonen and Lehmann)
- Only tested empirically with small datasets
- Did not scale well for many clients and large, complete valuation functions
- Nonpolynomial increase in runtime with respect to the number of possible allocations
The Problem: Complexity

- Finding the optimal allocation has a high computational complexity

Existing solutions:

- **Relaxing** the problem's definition, e.g., only concave valuation functions
 (Lazar and Semret 1999; Maillé and Tuffin 2004; Bae et al. 2008; Agmon Ben-Yehuda, Posener, et al. 2014)
 - Unrealistic (Funaro, Agmon Ben-Yehuda, and Schuster 2019b; Ye et al. 2015; Cameron and Singer 2014)
 - Known solutions only applicable to a single resource
The Problem: Complexity

- Finding the optimal allocation has a high computational complexity

Existing solutions:

- **Relaxing** the problem's definition, e.g., only concave valuation functions
 - (Lazar and Semret 1999; Maillé and Tuffin 2004; Bae et al. 2008; Agmon Ben-Yehuda, Posener, et al. 2014)
 - Unrealistic (Funaro, Agmon Ben-Yehuda, and Schuster 2019b; Ye et al. 2015; Cameron and Singer 2014)
 - Known solutions only applicable to a single resource

- **Approximation**: non-optimal social welfare
 - (Gao et al. 2017; Akbar et al. 2006; Moser, Jokanovic, and Shiratori 1997; Khan et al. 2002; Hifi, Michrafy, and Sbihi 2004)
 - Reduces the client’s incentives to be truthful
 - In turn further deflects from the optimal social welfare
The Problem: Complexity

- Finding the optimal allocation has a high computational complexity

Existing solutions:

- **Relaxing** the problem's definition, e.g., only concave valuation functions
 (Lazar and Semret 1999; Maillé and Tuffin 2004; Bae et al. 2008; Agmon Ben-Yehuda, Posener, et al. 2014)
 - Unrealistic (Funaro, Agmon Ben-Yehuda, and Schuster 2019b; Ye et al. 2015; Cameron and Singer 2014)
 - Known solutions only applicable to a single resource

- **Approximation**: non-optimal social welfare
 (Gao et al. 2017; Akbar et al. 2006; Moser, Jokanovic, and Shiratori 1997; Khan et al. 2002; Hifi, Michrafy, and Sbihi 2004)
 - Reduces the client’s incentives to be truthful
 - In turn further deflects from the optimal social welfare

- **B&B**: branch-and-bound algorithms
 (Ghassemi-Tari, Hendizadeh, and Hogg 2018; Hifi, Sadfi, and Sbihi 2004; Sbihi 2007; Razzazi and Ghasemi 2008; Gonen and Lehmann 2000)
 - Only tested empirically with small datasets
 - Did not scale well for many clients and large, complete valuation functions
 - Nonpolynomial increase in runtime with respect to the number of possible allocations
Dynamic Programming: joint-valuation algorithm

We have five clients

![Graph showing valuation vs resource units for five clients](image)
Dynamic Programming: joint-valuation algorithm

We have five clients
Joint Valuation Algorithm

- **Dynamic Programming**: joint-valuation algorithm

- We have five clients

![Graph showing valuation versus resource units for joint clients 1, 2, 3, and individual clients 4 and 5. The curve for joint clients 1, 2, 3 is higher and steeper than the individual clients' curves.]
Dynamic Programming: joint-valuation algorithm

We have five clients
Dynamic Programming: joint-valuation algorithm

We have five clients
For each joining of two valuations, we need to compare all the allocation combinations between the two clients

- Time complexity: $O(n \cdot N^2)$
 - n: the number of clients
 - N: the number of possible unit allocations for each client

Reasonable for single resource

For four resources, each with 15 units and 256 clients, this can add up to a full hour (excluding payment calculation)

- E.g., RAM, CPU, BW and LLC

Forces a long time period between auctions

- Infeasible in a RaaS system which requires fine time granularity
First Improvement: Payment Calculation

- We demonstrated joining the clients in one order
First Improvement: Payment Calculation

- We demonstrated joining the clients in one order
- We can join them also in the reverse order

![Graph showing valuation and resource units for clients](image)

L. Funaro, O. Agmon Ben-Yehuda, A. Schuster (Technion)
Let’s say we want to calculate the optimal social welfare without client 3.
First Improvement: Payment Calculation (2)

- Let’s say we want to calculate the optimal social welfare without client 3.
- We can take the joint valuation of clients 1,2 and clients 4,5 from the reverse order.

![Diagram showing the optimal social welfare for different combinations of clients.](image-url)
Let’s say we want to calculate the optimal social welfare without client 3.

We can take the joint valuation of clients 1,2 and clients 4,5 from the reverse order.
Auction Complexity

- Now we can calculate the payments in $O(w \cdot N^2)$
 - Instead of $O(w \cdot n \cdot N^2)$
 - w: The number of winning clients
Now we can calculate the payments in $O(w \cdot N^2)$

- Instead of $O(w \cdot n \cdot N^2)$
- w: The number of winning clients

But it could still take over an hour to calculate the optimal allocation
Now we can calculate the payments in $O(w \cdot N^2)$

Instead of $O(w \cdot n \cdot N^2)$

w: The number of winning clients

But it could still take over an hour to calculate the optimal allocation

We can reduce the complexity of joining two valuations by reducing the number of compared allocations.

To do so, we filter out allocations that cannot maximize the social welfare.
Now we can calculate the payments in $O(w \cdot N^2)$.

- Instead of $O(w \cdot n \cdot N^2)$
- w: The number of winning clients

But it could still take over an hour to calculate the optimal allocation.

We can reduce the complexity of joining two valuations by reducing the number of compared allocations.

To do so, we filter out allocations that cannot maximize the social welfare.

If an allocation globally maximizes the social welfare, then it is:

1. **Pareto efficient**: one agent’s allocation cannot be improved without hindering another’s
2. A **local optimum**: the aggregated valuation cannot be increased by taking a resource from one agent and giving it to another.
If the allocation is optimal, no client can be indifferent or benefit if we reduce its allocation.
If the allocation is optimal, no client can be indifferent or benefit if we reduce its allocation.

- We remove such allocations from the client’s valuation.
For an optimal allocation, any right partial derivative of any single agent’s valuation function is no greater than any of the other agents’ left partial derivatives.\(^1\)

\(\text{Social welfare} = 29\)

\(^1\)We define the left/right partial derivatives as the difference in the values between adjacent points in the allocation space \((dx = 1\) for all the resources\).
For an optimal allocation, any right partial derivative of any single agent’s valuation function is no greater than any of the other agents’ left partial derivatives.

Social welfare $= 28$

We define the left/right partial derivatives as the difference in the values between adjacent points in the allocation space ($dx = 1$ for all the resources)
For an optimal allocation, any right partial derivative of any single agent’s valuation function is no greater than any of the other agents’ left partial derivatives¹

Social welfare = 28

¹We define the left/right partial derivatives as the difference in the values between adjacent points in the allocation space ($dx = 1$ for all the resources)
For an optimal allocation, any right partial derivative of any single agent’s valuation function is no greater than any of the other agents' left partial derivatives. When joining two clients, for each allocation of one client we can compare only the allocations of the other client that fit this rule.

Social welfare = 29

We define the left/right partial derivatives as the difference in the values between adjacent points in the allocation space ($dx = 1$ for all the resources).
Local Optimum

- For an optimal allocation, any right partial derivative of any single agent’s valuation function is no greater than any of the other agents’ left partial derivatives
 - When joining two clients, for each allocation of one client we can compare only the allocations of the other client that fit this rule
 - This requires pre-processing

\[\text{Social welfare} = 29 \]

\[^1 \text{We define the left/right partial derivatives as the difference in the values between adjacent points in the allocation space (dx = 1 for all the resources)} \]
Local Optimum Preprocess

- When joining two clients, we first pre-process the valuation function of one of the client
- Then, for each allocation of the other client, we find the points that preserve the local optimum
 - This can be done efficiently using k-dimensional upper-bound data structure
 - Its construction time complexity is $O(N \log N)$
 - Its lookup time complexity is $O(\log N)$
 - So the total complexity for comparing all of the allocations is $O(N \log N)$

- The lookup time complexity is only true if the number of matching allocations is constant (independent of N and n) and relatively low

More details in:
In the paper, we prove that the average number of possible allocations that do not violate the local-optimum rule is **constant**.

We also show that empirically in our evaluation.
Our Improvement

Baseline joint-valuation algorithm:

Our improved joint-valuation algorithm:
Conclusions

► Our algorithm allows cloud providers to implement the RaaS model
► They can deploy a multi-resource auction for allocation of additional resources in an existing VM every two minutes for up to 256 clients in a single physical machine
 ► Over 20 times improvement compared with the original algorithm
 ► Without restrictions on the valuation functions
► The implementation of our algorithm is available from https://bitbucket.org/funaro/vecfunc-vcg

Questions?

Liran Funaro: funaro@cs.technion.ac.il