

Stochastic Resource Allocation

Liran Funaro Orna Agmon Ben-Yehuda Assaf Schuster

International Conference on Virtual Execution Environments (VEE) April 14, 2019, Providence, RI, USA

L. Funaro, O. Agmon Ben-Yehuda, A. Schuster (Technion)

Stochastic Resource Allocation

The Problem: Fixed Resource Bundles

- Resources in the cloud are underutilized
- ► The main cause of resource underutilization is fixed performance bundles

- Clients rent the resources to sustain their highest workload
 - But they do not use the resources all the time
- The provider guarantees with good probability that the clients will be able to use their rented resources at any given time
- It must reserve these resources
 - It cannot resell them or use them to other purposes
- Incentivizing clients to reduce their fixed reserved resource requirements might solve the problem by allowing more clients per physical machine

The existing solution is not perfect

- Still reserve the resource
- Instead of an upper limit...
- Limits the client to a certain average resource consumption
- Adopted by many major cloud providers

The existing solution is not perfect

- Still reserve the resource
- Instead of an upper limit...
- Limits the client to a certain average resource consumption
- Adopted by many major cloud providers

Disadvantages:

- ► Hidden information regarding resource availability
- **Coupling** of reserved resources and average usage

Stochastic Allocation (SA)

- Under the SA mechanism, the provider offers clients a combination:
 - an amount of reserved resources
 - with a choice of a stochastic allocation class
- The provider posts fixed unit-prices for both goods
- And periodically publishes statistics on resource availability for each SA class
- Each client may choose to rent reserved and/or stochastic resources

- Linux's completely fair scheduler (CFS) combines a share-based resource allocation system with a hard rate limit
- Each task is assigned a number of shares, which entitle it to a portion of the resources proportional to the number of allocated shares

- Linux's completely fair scheduler (CFS) combines a share-based resource allocation system with a hard rate limit
- Each task is assigned a number of shares, which entitle it to a portion of the resources proportional to the number of allocated shares

- Linux's completely fair scheduler (CFS) combines a share-based resource allocation system with a hard rate limit
- Each task is assigned a number of shares, which entitle it to a portion of the resources proportional to the number of allocated shares

- Linux's completely fair scheduler (CFS) combines a share-based resource allocation system with a hard rate limit
- Each task is assigned a number of shares, which entitle it to a portion of the resources proportional to the number of allocated shares
- Having a portion of the shares is effectively the same as reserving the same portion of the resources

- Linux's completely fair scheduler (CFS) combines a share-based resource allocation system with a hard rate limit
- Each task is assigned a number of shares, which entitle it to a portion of the resources proportional to the number of allocated shares
- Having a portion of the shares is effectively the same as reserving the same portion of the resources

- Linux's completely fair scheduler (CFS) combines a share-based resource allocation system with a hard rate limit
- Each task is assigned a number of shares, which entitle it to a portion of the resources proportional to the number of allocated shares
- Having a portion of the shares is effectively the same as reserving the same portion of the resources

- Linux's completely fair scheduler (CFS) combines a share-based resource allocation system with a hard rate limit
- Each task is assigned a number of shares, which entitle it to a portion of the resources proportional to the number of allocated shares
- Having a portion of the shares is effectively the same as reserving the same portion of the resources
- CFS does not support a key feature of SA: defining a different consumption share for the leftover CPUs

- Linux's completely fair scheduler (CFS) combines a share-based resource allocation system with a hard rate limit
- Each task is assigned a number of shares, which entitle it to a portion of the resources proportional to the number of allocated shares
- Having a portion of the shares is effectively the same as reserving the same portion of the resources
- CFS does not support a key feature of SA: defining a different consumption share for the leftover CPUs

- We adapted CFS to support asymmetric reserved resources and share allocations
- We duplicated the CFS logic, to have a second, alternative, CFS

Evaluating Our Solution

How can we compare our solution to **burstable performance** and **fixed performance**?

Will it improve the **utilization**?

Will it be more **popular among clients**?

Will it be more profitable to the providers?

Evaluating Our Solution

How can we compare our solution to burstable performance and fixed performance?

Will it improve the **utilization**?

Will it be more **popular among clients**?

Will it be more profitable to the providers?

- ► We developed a framework to evaluate new resource allocation schemes
- It simulates a realistic data center with realistic servers and clients

Azure Public Dataset

► We used data from the Azure public dataset

- Includes data for over 2 million clients
 - Purchased bundle (fixed-performance)
 - CPU usage every 5 minutes (min, max and average)
 - and more...

Available from: https://github.com/Azure/AzurePublicDataset

We simulated scenarios where clients share CPU at fine granularity

We simulated scenarios where clients share CPU at fine granularity

▶ We simulated scenarios where clients share CPU at fine granularity

Clients' Load

- We simulated scenarios where clients share CPU at fine granularity
 - We generated 25 samples from each 5 minute sample such that their minimum, maximum and average match the sample
 - We used beta distribution, which can be defined by its average and bounds

What is the performance the clients gain from the CPU?

- To allow the clients to make an informed decision when selecting a bundle, we generated a required performance distribution function
 - Cumulative distribution function
 - It is inspired by performance functions for real applications

- Each simulated client selected the most profitable bundle for its load and resource requirements
- It used its own load statistics to make a decision

- ► To allocate clients to 64-core servers, we randomly shuffled them
- Then, one at a time, each client was assigned to the first server that could accommodate its bundle

- Each client's load for the current day (iteration) was selected cyclically from its data over multiple days
- ► The provider collected statistics on the resource utilization in each server

The cloud provider supplies statistical information regarding the maximal resource amount that a client might obtain over a short period with the commensurate number of shares

- A number of clients were allowed to switch their bundle in each iteration
- They used their own load statistics and the provider's statistical description of the resources that every bundle yields

Evaluating Our Framework

- We simulated a fixed-performance allocation scheme
- Our results were similar to known cloud data before burstable performance was introduced
- ▶ 15%-20% CPU utilization
- Bundle distribution (right)
 - The selected number of virtual cores in our simulation and in the Azure dataset

Evaluating Our Framework

- We simulated a fixed-performance allocation scheme
- Our results were similar to known cloud data before burstable performance was introduced
- ▶ 15%-20% CPU utilization
- Bundle distribution (right)
 - The selected number of virtual cores in our simulation and in the Azure dataset

Our framework is validated and consistent with real data

Evaluating our Solution

- Fixed Performance (FP)
 - ▶ FP always offered to the clients as an alternative
 - A CPU unit costs \$1
- Burstable Performance (BP) share costs \$2 to \$4
 - The client can rent bundles in which the number of reserved resources equals the number of shares
 - The shares can be utilized without limitations
 - The client's average consumption is limited
- ► Stochastic Allocation (SA) share costs \$0.15 to \$0.9
 - ► The client can rent shares alongside reserved resources
 - A share can be utilized only up to its absolute value

Clients per Server (CPS)

Clients per Server (CPS)

70% more clients per server compared to BP

Clients per Server (CPS)

- 70% more clients per server compared to BP
- 92%-99% of the clients preferred SA over FP
- 56% of the clients preferred SA over BP and FP

Utilization

Utilization

 SA mean total utilization (73%) is higher than for BP (44%)

Utilization

- SA mean total utilization (73%) is higher than for BP (44%)
- BP reserved utilization is similar to its total utilization

Provider Goals

Public cloud providers:

Is it possible that Amazon has lost money by introducing burstable performance?

Introducing Amazon EC2 T3 Instances

Posted On: Aug 21, 2018

Amazon Web Services (AWS) is introducing the next generation Amazon Elastic Compute Cloud (EC2) burstable general-purpose instances, T3. T3 instances offer a balance of compute, memory, and network resources and are designed to provide a baseline level of CPU performance with the ability to burst above the baseline when needed. T3 instances are powered by the AWS Nitro System which includes a lightweight

Provider Goals

Public cloud providers:

- Maximize their profit from renting their machines
- Take servers' operational costs into account

Is it possible that Amazon has lost money by introducing burstable performance?

Probably not...

Introducing Amazon EC2 T3 Instances

Posted On: Aug 21, 2018

Amazon Web Services (AWS) is introducing the next generation Amazon Elastic Compute Cloud (EC2) burstable general-purpose instances, T3. T3 instances offer a balance of compute, memory, and network resources and are designed to provide a baseline level of CPU performance with the ability to burst above the baseline when needed. T3 instances are powered by the AWS Nitro System which includes a lightweight

L. Funaro, O. Agmon Ben-Yehuda, A. Schuster (Technion)

 SA can increase the profits of the public cloud provider by over 28% compared to BP

Public cloud providers:

- Maximize their profit from renting their machines
- Take servers' operational costs into account

Private cloud providers:

Maximize the aggregated benefit all their clients draw from a single server

Provider's Aggregated Benefit per Server

- SA increases the value each server generates for the corporation by over 55% compared to BP
- SA achieved over 98% of the optimal social welfare

\bigcirc Conclusions

- Stochastic CPU allocation via shares allows clients to reduce their reserved resource requirements
- ► SA increases the number of clients per server by more than 70% compared to BP
- ► SA increases the profits of the public cloud provider by over 28% compared to BP
- ▶ SA increases the value each server generates for the corporation by over 55%

- Our evaluation framework is validated against real cloud data
- It is available as an open source: https://bitbucket.org/funaro/stochastic-allocation

Questions?

Liran Funaro: funaro@cs.technion.ac.il

L. Funaro, O. Agmon Ben-Yehuda, A. Schuster (Technion)

imulating Clients

- Real (human) clients may choose an offering in any way they like
- They may choose randomly, take some time to make a decision, or go through a long iterative process of selection and improvement

In the simulation we needed to create realistic artificial intelligence agents which mimic the behavior of real clients

Elients' Requirements

Long-term Requirements

4r1 14

- ► Have **non-interactive** workloads
- Value finishing the workload by or before a deadline
- Not value getting partial results ahead of time

Elients' Requirements

Long-term Requirements

► Have **non-interactive** workloads

Arri 14

- Value finishing the workload by or before a deadline
- Not value getting partial results ahead of time

Immediate Requirements

- Runs brief independent workloads or an interactive workload, and sleeps the rest of the time
- The failure or fulfillment of one workload does not affect the client's future requirements

Elients' Requirements

Long-term Requirements

► Have **non-interactive** workloads

14

- Value finishing the workload by or before a deadline
- Not value getting partial results ahead of time

Immediate Requirements

- Runs brief independent workloads or an interactive workload, and sleeps the rest of the time
- The failure or fulfillment of one workload does not affect the client's future requirements

Example: Web Application

- Partition their budget proportionately to the gain from satisfying these dual requirements
- Would not like to miss an opportunity to show an advertisement to their visitors
- Preserve their customers' visit rate

We used the client's purchased fixed-performance bundle as an lower bound on their budget and draw a budget out of a Pareto distribution that is higher than this bound

- We used the client's purchased fixed-performance bundle as an lower bound on their budget and draw a budget out of a Pareto distribution that is higher than this bound
- To determine how to split the budget between the two requirements we used Azure classification

- We used the client's purchased fixed-performance bundle as an lower bound on their budget and draw a budget out of a Pareto distribution that is higher than this bound
- To determine how to split the budget between the two requirements we used Azure classification
- A probability density function (PDF) of the portion between the two valuation types
- The immediate requirements portion completes it to 1

Valuation Functions

- For each type of requirement, we created a valuation function
- V_{imm} and V_{lt} yields a monetary value for an **immediate** and **long-term** performance
- ▶ The client's profit: $E(V_{imm}(P_{r,s})) + V_{lt}(E(P_{r,s})) Cost_{r,s}$
 - s and r denotes the number of shares and reserved resources
 - \blacktriangleright $P_{r,s}$ denotes a random variable which describes the clients' performance with r and s
- We generated for each client V_{imm} and V_{lt} such that its profit will be higher for their bundle of reserved resources than any other bundle of reserved resources (s ≡ 0)
- Solved implicitly

Comparison of the Social Welfare

Distribution of burstable performance bundle

Distribution of unlimited shares bundle

Distribution of limited shares bundle

Effective vs. expected Clients' Revenue

L. Funaro, O. Agmon Ben-Yehuda, A. Schuster (Technion)

- Over the course of the last 60 iterations, up to 12% of the clients changed their selected bundle from the first iteration to the last, in all the tested cases.
- The standard deviation of the selected bundles' distribution over these iterations was under 0.6% and the standard deviation of the shares CDF was under 0.01%, in all the tested cases.

- When we modified the **beta density** to be 0.5, 10 or 50, CPS was increased by up to 6% for SA, on the one hand, and reduced by up to 5% for BP, on the other, compared with the main value (1).
- When we avoided the over-the-top extrapolation of the generated load values, CPS was reduced by up to 7%.
- When we modified the performance functions so they were linear and concave, CPS was reduced by up to 3% compared with monotonically increasing ones.
- ▶ When we modified the **Pareto index**, CPS was reduced by up to 6% for a Pareto index of 0.8 and increased by up to 1% for an index of 1.3, compared with the main index (1.1).

- We also modified the number of clients that can **change their bundle**.
- The average CPS was not affected when 384 (or less) clients changed their bundle at once.
- ▶ When more than 256 clients changed their bundle, however, the results fluctuated.
- ▶ When more than 384 clients changed their bundle, the results failed to converge.
- Throughout the above-mentioned modifications, this ratio turned out higher than in the main results presented earlier.