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The Problem: Fixed Resource Bundles

I Resources in the cloud are underutilized
I The main cause of resource underutilization is fixed performance bundles

I Clients rent the resources to sustain their highest workload
I But they do not use the resources all the time

I The provider guarantees with good probability that the clients will
be able to use their rented resources at any given time

I It must reserve these resources
I It cannot resell them or use them to other purposes

I Incentivizing clients to reduce their fixed reserved resource requirements might
solve the problem by allowing more clients per physical machine
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Burstable Performance
The existing solution is not perfect

Introducing Amazon EC2 T3 Instances
Posted On: Aug 21, 2018
Amazon Web Services (AWS) is introducing the next
generation Amazon Elastic Compute Cloud (EC2) 
burstable general-purpose instances, T3. T3 instances 
offer a balance of compute, memory, and network 
resources and are designed to provide a baseline level 
of CPU performance with the ability to burst above the 
baseline when needed. T3 instances are powered by the 
AWS Nitro System which includes a lightweight 
hardware-accelerated hypervisor, delivering practically  


https://aws.amazon.com/about-aws/whats-new/2018/08/introducing-amazon-ec2-t3-instances

I Still reserve the resource
I Instead of an upper limit...
I Limits the client to a certain average resource consumption
I Adopted by many major cloud providers

Disadvantages:
I Hidden information regarding resource availability
I Coupling of reserved resources and average usage
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Stochastic Allocation (SA)

I Under the SAmechanism, the provider offers clients a
combination:
I an amount of reserved resources
I with a choice of a stochastic allocation class

I The provider posts fixed unit-prices for both goods
I And periodically publishes statistics on resource availability for each SA class
I Each client may choose to rent reserved and/or stochastic resources

L. Funaro, O. Agmon Ben-Yehuda, A. Schuster (Technion) Stochastic Resource Allocation VEE ’19 4 / 19



Implementing Stochastic Allocation via Shares

I Linux’s completely fair scheduler (CFS) combines a share-based resource allocation
system with a hard rate limit

I Each task is assigned a number of shares, which entitle it to a portion of the
resources proportional to the number of allocated shares

I Having a portion of the shares is effectively the same as reserving the same portion
of the resources

I CFS does not support a key feature of SA: defining a different consumption share for
the leftover CPUs
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I Linux’s completely fair scheduler (CFS) combines a share-based resource allocation
system with a hard rate limit

I Each task is assigned a number of shares, which entitle it to a portion of the
resources proportional to the number of allocated shares

I Having a portion of the shares is effectively the same as reserving the same portion
of the resources

I CFS does not support a key feature of SA: defining a different consumption share for
the leftover CPUs

I We adapted CFS to support asymmetric reserved resources
and share allocations

I We duplicated the CFS logic, to have a second, alternative,
CFS
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Evaluating Our Solution

How can we compare our solution to burstable performance and fixed performance?

? Will it improve the utilization?

? Will it be more popular among clients?

? Will it be more profitable to the providers?

I We developed a framework to evaluate new resource allocation schemes
I It simulates a realistic data center with realistic servers and clients
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Azure Public Dataset

I We used data from the Azure public dataset

I Includes data for over 2 million clients
I Purchased bundle (fixed-performance)
I CPU usage every 5 minutes (min, max and average)
I and more...

Available from: https://github.com/Azure/AzurePublicDataset
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Clients’ Load

I We simulated scenarios where clients share CPU at fine granularity

I We generated 25 samples from each 5 minute sample such that their minimum,
maximum and average match the sample

I We used beta distribution, which can be defined by its average and bounds
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Clients’ Performance

I What is the performance the clients gain from the CPU?
I To allow the clients to make an informed decision when selecting a bundle, we

generated a required performance distribution function
I Cumulative distribution function
I It is inspired by performance functions for real applications
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Evaluation Methodology

Bundle
Selection

Client
Allocation

Cloud
Simulation

Share Distribution Calculation

Statistics
Collection

Distribution
Publishing
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I Each simulated client selected the most profitable
bundle for its load and resource requirements

I It used its own load statistics to make a decision

L. Funaro, O. Agmon Ben-Yehuda, A. Schuster (Technion) Stochastic Resource Allocation VEE ’19 10 / 19



Evaluation Methodology

Bundle
Selection

Client
Allocation

Cloud
Simulation

Share Distribution Calculation

Statistics
Collection

Distribution
Publishing

I To allocate clients to 64-core servers, we randomly shuffled them
I Then, one at a time, each client was assigned to the first server that could

accommodate its bundle
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Evaluation Methodology

Bundle
Selection

Client
Allocation

Cloud
Simulation

Share Distribution Calculation

Statistics
Collection

Distribution
Publishing

I Each client’s load for the current day (iteration) was selected cyclically from its data
over multiple days

I The provider collected statistics on the resource utilization in each server
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Evaluation Methodology

Bundle
Selection

Client
Allocation

Cloud
Simulation
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Statistics
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Publishing

I The cloud provider supplies statistical
information regarding the maximal
resource amount that a client might
obtain over a short period with the
commensurate number of shares 1/64 1/16 1/4 1 4 16 64
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I A number of clients were allowed to switch their bundle in each iteration
I They used their own load statistics and the provider’s statistical description of the

resources that every bundle yields
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Evaluating Our Framework

I We simulated a fixed-performance allocation scheme
I Our results were similar to known cloud data before burstable performance was

introduced

I 15%-20% CPU utilization
I Bundle distribution (right)

I The selected number of virtual
cores in our simulation and in the
Azure dataset 1
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Evaluating our Solution

I Fixed Performance (FP)
I FP always offered to the clients as an alternative
I A CPU unit costs $1

I Burstable Performance (BP) — share costs $2 to $4
I The client can rent bundles in which the number of

reserved resources equals the number of shares
I The shares can be utilized without limitations
I The client’s average consumption is limited

I Stochastic Allocation (SA) — share costs $0.15 to $0.9
I The client can rent shares alongside reserved resources
I A share can be utilized only up to its absolute value
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Clients per Server (CPS)
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I 70%more clients per server compared
to BP

I 92%–99% of the clients preferred SA
over FP

I 56% of the clients preferred SA over BP
and FP
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Utilization
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Provider Goals

Public cloud providers:

I Maximize their profit from renting their machines
I Take servers’ operational costs into account
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Is it possible that Amazon has lost money by
introducing burstable performance?

Probably not...
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Provider’s Profit
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Provider Goals

Public cloud providers:
I Maximize their profit from renting their machines
I Take servers’ operational costs into account

Private cloud providers:
I Maximize the aggregated benefit all their clients draw from

a single server
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Provider’s Aggregated Benefit per Server
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I SA increases the value
each server generates
for the corporation by
over 55% compared to
BP

I SA achieved over 98%
of the optimal social
welfare
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Conclusions
I Stochastic CPU allocation via shares allows clients to

reduce their reserved resource requirements
I SA increases the number of clients per server by more than 70% compared to BP
I SA increases the profits of the public cloud provider by over 28% compared to BP
I SA increases the value each server generates for the corporation by over 55%

I Our evaluation framework is validated against real cloud data
I It is available as an open source:

https://bitbucket.org/funaro/stochastic-allocation

Questions?

Liran Funaro: funaro@cs.technion.ac.il
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Backup
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Simulating Clients

I Real (human) clients may choose an offering in any way
they like

I They may choose randomly, take some time to make a
decision, or go through a long iterative process of selection
and improvement

I In the simulation we needed to create realistic artificial
intelligence agentswhich mimic the behavior of real clients
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Clients’ Requirements

14 Long-term Requirements
I Have non-interactive workloads
I Value finishing the workload by or

before a deadline
I Not value getting partial results

ahead of time

Immediate Requirements
I Runs brief independent workloads or

an interactive workload, and sleeps
the rest of the time

I The failure or fulfillment of one
workload does not affect the client’s
future requirements

WWW Example: Web Application
I Partition their budget proportionately to the gain from satisfying these dual

requirements
I Would not like to miss an opportunity to show an advertisement to their visitors
I Preserve their customers’ visit rate
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Budget

I We used the client’s purchased fixed-performance bundle as an lower bound on
their budget and draw a budget out of a Pareto distribution that is higher than this
bound

I To determine how to split the budget
between the two requirements we
used Azure classification
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Valuation Functions

I For each type of requirement, we created a valuation function
I Vimm and Vlt yields a monetary value for an immediate and long-term performance
I The client’s profit: E (Vimm(Pr,s)) + Vlt (E(Pr,s))− Costr,s

I s and r denotes the number of shares and reserved resources
I Pr,s denotes a random variable which describes the clients’ performance with r and s

I We generated for each client Vimm

and Vlt such that its profit will be
higher for their bundle of reserved
resources than any other bundle of
reserved resources (s ≡ 0)

I Solved implicitly 0% 50% 100%
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Comparison of the Social Welfare
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Distribution of burstable performance bundle
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Distribution of unlimited shares bundle
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Distribution of limited shares bundle
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Effective vs. expected Clients’ Revenue
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Validation (1)

I Over the course of the last 60 iterations, up to 12% of the clients changed their
selected bundle from the first iteration to the last, in all the tested cases.

I The standard deviation of the selected bundles’ distribution over these iterations
was under 0.6% and the standard deviation of the shares CDF was under 0.01%, in
all the tested cases.
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Validation (2)

I When we modified the beta density to be 0.5, 10 or 50, CPS was increased by up to
6% for SA, on the one hand, and reduced by up to 5% for BP, on the other, compared
with the main value (1).

I When we avoided the over-the-top extrapolation of the generated load values, CPS
was reduced by up to 7%.

I When we modified the performance functions so they were linear and concave,
CPS was reduced by up to 3% compared with monotonically increasing ones.

I When we modified the Pareto index, CPS was reduced by up to 6% for a Pareto
index of 0.8 and increased by up to 1% for an index of 1.3, compared with the main
index (1.1).
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Validation (3)

I We also modified the number of clients that can change their bundle.
I The average CPS was not affected when 384 (or less) clients changed their bundle at

once.
I When more than 256 clients changed their bundle, however, the results fluctuated.
I When more than 384 clients changed their bundle, the results failed to converge.
I Throughout the above-mentioned modifications, this ratio turned out higher than in

the main results presented earlier.
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