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@M= The Problem: Fixed Resource Bundles

» Resources in the cloud are underutilized
» The main cause of resource underutilization is fixed performance bundles

» Clients rent the resources to sustain their highest workload
» But they do not use the resources all the time
» The provider guarantees with good probability that the clients will
be able to use their rented resources at any given time
» It must reserve these resources
» It cannot resell them or use them to other purposes

» Incentivizing clients to reduce their fixed reserved resource requirements might
solve the problem by allowing more clients per physical machine
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#5%» Burstable Performance

The existing solution is not perfect

» Still reserve the resource
Introducing Amazon EC2 T3 InStances > Instead Of an upper |imit

Amazon Web Services (AWS) is introducing the next
generation Amazon Elastic Compute Cloud (EC2)
burstable general-purpose instances, T3. T3 instances > L‘ H h I' H H
offer a balance of compute, memory, and network “ | " S e C |en O a Cer aln average reSOU rce C0n5U| I |p IOn
resources and are designed to provide a baseline level
of CPU performance with the ability to burst above the
baseline when needed. T3 instances are powered by the
al

» Adopted by many major cloud providers

L. Funaro, O. Agmon Ben-Yehuda, A. Schuster (Technion) Stochastic Resource Allocation VEE 19 3/19



#5%» Burstable Performance

The existing solution is not perfect

» Still reserve the resource
Introducing Amazon EC2 T3 InStances > Instead Of an upper‘ ||m|t

Amazon Web Services (AWS) is introducing the next
generation Amazon Elastic Compute Cloud (EC2)
burstable general-purpose instances, T3. T3 instances > L‘ H h I' H H
offer a balance of compute, memory, and network Iml S e C Ien 0 a Cer aln average reSOU rce Consump |On
resources and are designed to provide a baseline level
of CPU performance with the ability to burst above the
baseline when needed. T3 instances are powered by the
a

gt » Adopted by many major cloud providers

Disadvantages:

» Hidden information regarding resource availability
» Coupling of reserved resources and average usage
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Stochastic Allocation (SA)

» Under the SA mechanism, the provider offers clients a
.@M. o
» an amount of reserved resources
» with a choice of a stochastic allocation class
» The provider posts fixed unit-prices for both goods

» And periodically publishes statistics on resource availability for each SA class
» Each client may choose to rent reserved and/or stochastic resources
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< Implementing Stochastic Allocation via Shares

» Linux’s completely fair scheduler (CFS) combines a share-based resource allocation
system with a hard rate limit

» Each task is assigned a number of shares, which entitle it to a portion of the
resources proportional to the number of allocated shares
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Implementing Stochastic Allocation via Shares

» Linux’s completely fair scheduler (CFS) combines a share-based resource allocation
system with a hard rate limit

» Each task is assigned a number of shares, which entitle it to a portion of the
resources proportional to the number of allocated shares

» Having a portion of the shares is effectively the same as reserving the same portion
of the resources

» CFS does not support a key feature of SA: defining a different consumption share for
the leftover CPUs

» We adapted CFS to support asymmetric reserved resources

m and share allocations
» We duplicated the CFS logic, to have a second, alternative,

CFS
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P Evaluating Our Solution

How can we compare our solution to burstable performance and fixed performance?

‘?‘ Will it improve the utilization?
‘?‘ Will it be more popular among clients?

‘?‘ Will it be more profitable to the providers?
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P Evaluating Our Solution

How can we compare our solution to burstable performance and fixed performance?

‘?‘ Will it improve the utilization?
‘?‘ Will it be more popular among clients?

‘?‘ Will it be more profitable to the providers?

> We developed a framework to evaluate new resource allocation schemes
» It simulates a realistic data center with realistic servers and clients
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® Azure Public Dataset

» We used data from the Azure public dataset

» Includes data for over 2 million clients

» Purchased bundle (fixed-performance)
> CPU usage every 5 minutes (min, max and average)
» and more...

Available from: https://github.com/Azure/AzurePublicDataset
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gd® Clients’ Load

» We simulated scenarios where clients share CPU at fine granularity
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gd® Clients’ Load

» We simulated scenarios where clients share CPU at fine granularity
> We generated 25 samples from each 5 minute sample such that their minimum,

maximum and average match the sample
P> We used beta distribution, which can be defined by its average and bounds

'S
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gd® Clients’ Performance

» What is the performance the clients gain from the CPU?
P To allow the clients to make an informed decision when selecting a bundle, we
generated a required performance distribution function
» Cumulative distribution function
» It is inspired by performance functions for real applications

=
o
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o9
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Cumulative Probability
Nejen}

0.00 + §
0%20% 50% 100%
Required Performance
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Evaluation Methodology

Bundle Client Cloud
—_— _ _ |
Selection Allocation Simulation

Distribution Statistics
Publishing [ ] Collection

Share Distribution Calculation
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Evaluation Methodology

Bundle Client Cloud
e — — —
Selection Allocation Simulation

Distribution Statistics
Publishing [ ] Collection

Share Distribution Calculation

» Each simulated client selected the most profitable
bundle for its load and resource requirements

» |t used its own load statistics to make a decision
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Evaluation Methodology

Bundle Client Cloud
—_— _ _
Selection Allocation Simulation

Distribution
Publishing
[ Share Distribution Calculation

Statistics
] Collection

» To allocate clients to 64-core servers, we randomly shuffled them

» Then, one at a time, each client was assigned to the first server that could
accommodate its bundle
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Evaluation Methodology

Bundle Client Cloud
—> —_— > e
Selection Allocation Simulation

Distribution
Publishing
[ Share Distribution Calculation

Statistics
] Collection

» Each client’s load for the current day (iteration) was selected cyclically from its data
over multiple days

» The provider collected statistics on the resource utilization in each server
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Evaluation Methodology

Bundle Client Cloud
—> —_— > e R
Selection Allocation Simulation

Distribution Statistics
Publishing Collection
Share Distribution Calculation

> The cloud provider supplies statistical 104 f share 2 shares
information regarding the maximal :i% 8 Zﬁjﬁj g Spares
resource amount that a client might %—é 057 § share A0 shares
obtain over a short period with the M . L share —7 /|

commensurate number of shares o1 116 141 T 16 o
CPU Potential

VEE '19 10/19
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Evaluation Methodology

Bundle Client Cloud
e — — —
Selection Allocation Simulation
Distribution
Publishing [

Statistics
Collection

Share Distribution Calculation

» A number of clients were allowed to switch their bundle in each iteration

» They used their own load statistics and the provider’s statistical description of the
resources that every bundle yields

1 chare

7 share 2 shares

% share 4 shares

% share 8 shares

1 share 16 shares
28 32 shares
1 share

1/64 1/16  1/4 1 4 16 64

CPU Potential
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Evaluation Methodology

Bundle Client Cloud
—_— _ _ |
Selection Allocation Simulation

Distribution Statistics
Publishing Collection
[ Share Distribution Calculation ]
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P Evaluating Our Framework

» We simulated a fixed-performance allocation scheme
» Our results were similar to known cloud data before burstable performance was

introduced

Il Azure V71 Our Simulation

> 15%-20% CPU utilization
» Bundle distribution (right) 40% -
» The selected number of virtual 2 90% -
cores in our simulation and in the a
1 2 4 8 16

Azure dataset ) =
6 8§ 1 2

Clients

CPUs
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P Evaluating Our Framework

» We simulated a fixed-performance allocation scheme
» Our results were similar to known cloud data before burstable performance was

introduced

Il Azure V71 Our Simulation

> 15%-20% CPU utilization
» Bundle distribution (right) 40% -
» The selected number of virtual 2 90% -
cores in our simulation and in the a
1 2 4 8 16

Azure dataset ) =
6 8§ 1 2

Clients

CPUs

/ Our framework is validated and consistent with real data
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P Evaluating our Solution

» Fixed Performance (FP)

» FP always offered to the clients as an alternative
» A CPU unit costs $1

» Burstable Performance (BP) — share costs $2 to $4
» The client can rent bundles in which the number of
reserved resources equals the number of shares
» The shares can be utilized without limitations
» The client’s average consumption is limited
: » Stochastic Allocation (SA) — share costs $0.15 to $0.9

» The client can rent shares alongside reserved resources
» A share can be utilized only up to its absolute value
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» 70% more clients per server compared
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B Clients per Server (CPS)
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Stochastic Resource Allocation
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Provider Goals

Public cloud providers:

o {01100 18 10T (R P A 2 298 2 Is it possible that Amazon has lost money by
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Amazon Web Services (AWS) is introducing the next generation Amazon Elastic Compute Cloud (EC2)
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Provider Goals

Public cloud providers:
» Maximize their profit from renting their machines
» Take servers’ operational costs into account

A Is it possible that Amazon has lost money by
introducing burstable performance?

Probably not...

:
:

Introducing Amazon EC2 T3 Instances

Posted On: Aug 21, 2018

Amazon Web Services (AWS) is introducing the next generation Amazon Elastic Compute Cloud (EC2)
burstable general-purpose instances, T3. T3 instances offer a balance of compute, memory, and network

resources and are designed to provide a baseline level of CPU performance with the ability to burst above the
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Provider’s Profit
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Provider Goals

Public cloud providers:
» Maximize their profit from renting their machines
» Take servers’ operational costs into account

Private cloud providers:

» Maximize the aggregated benefit all their clients draw from
a single server
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Provider’s Aggregated Benefit per Server

» SA increases the value
each server generates
for the corporation by
over 55% compared to
BP

» SA achieved over 98%
of the optimal social
welfare

Benefit per Server
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Conclusions

m » Stochastic CPU allocation via shares allows clients to
reduce their reserved resource requirements
» SA increases the number of clients per server by more than 70% compared to BP

» SA increases the profits of the public cloud provider by over 28% compared to BP
> SA increases the value each server generates for the corporation by over 55%

o & » Our evaluation framework is validated against real cloud data

E' » It is available as an open source:
oo https://bitbucket.org/funaro/stochastic—-allocation

Questions?

Liran Funaro: funaro@cs.technion.ac.il

VEE "19 19/19
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= Simulating Clients

» Real (human) clients may choose an offering in any way
they like

» They may choose randomly, take some time to make a
decision, or go through a long iterative process of selection
and improvement

» In the simulation we needed to create realistic artificial
intelligence agents which mimic the behavior of real clients
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Clients’ Requirements

Long-term Requirements
» Have non-interactive workloads

» Value finishing the workload by or
before a deadline

» Not value getting partial results
ahead of time
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Clients’ Requirements

Long-term Requirements Immediate Requirements
» Have non-interactive workloads » Runs brief independent workloads or

» Value finishing the workload by or an interactive workload, and sleeps
before a deadline the rest of the time

» The failure or fulfillment of one
workload does not affect the client’s
future requirements

» Not value getting partial results
ahead of time
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Clients’ Requirements

Long-term Requirements Immediate Requirements

» Have non-interactive workloads » Runs brief independent workloads or
an interactive workload, and sleeps
the rest of the time

» The failure or fulfillment of one
workload does not affect the client’s
future requirements

» Value finishing the workload by or
before a deadline

» Not value getting partial results
ahead of time

aus, Example: Web Application
» Partition their budget proportionately to the gain from satisfying these dual
requirements
» Would not like to miss an opportunity to show an advertisement to their visitors

» Preserve their customers’ visit rate
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(s{8 Budget

» We used the client’s purchased fixed-performance bundle as an lower bound on
their budget and draw a budget out of a Pareto distribution that is higher than this
bound
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(53 Budget

» We used the client’s purchased fixed-performance bundle as an lower bound on

their budget and draw a budget out of a Pareto distribution that is higher than this
bound

— - % 60%
» To determine how to split the budget Interactive ’
between the two requirements we Delay Insensitive
ege  _as Unknown
used Azure classification 33%
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Jal

($) Budget

» We used the client’s purchased fixed-performance bundle as an lower bound on
their budget and draw a budget out of a Pareto distribution that is higher than this
bound

; [ 60%
> To determine how to split the budget BB Interactive 0

between the two requirements we 361;‘3’ Insensitive
used Azure classification nknown 4301

» A probability density function (PDF) N N
of the portion between the two % 2 \\
valuation types = Ss<

» The immediate requirements portion 0 02 05 075 1
. Long-term Requirements Portion
completes it to 1
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2Z8 Valuation Functions

» For each type of requirement, we created a valuation function

Vimm and V}; yields a monetary value for an immediate and long-term performance
» The client’s profit: £ (Vimm(Prs)) + Vit (E(P,.s)) — Cost,.s

» sand r denotes the number of shares and reserved resources

» P, denotes a random variable which describes the clients’ performance with r and s

> We generated for each client V.,

Immediate ;

and V}; such that its profit will be @ 4{" 7 Long Term{ 2
higher for their bundle of reserved g %
resources than any other bundle of ;i fe

reserved resources (8 = 0)

. . s 0% 50% 100%
> Solved |mp|IC|t|y Required Performance Allocated CPUs
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Distribution of burstable performance bundle
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Distribution of unlimited shares bundle
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Distribution of limited shares bundle
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Validation (1)

» Over the course of the last 60 iterations, up to 12% of the clients changed their
selected bundle from the first iteration to the last, in all the tested cases.

» The standard deviation of the selected bundles’ distribution over these iterations
was under 0.6% and the standard deviation of the shares CDF was under 0.01%, in
all the tested cases.
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Validation (2)

» When we modified the beta density to be 0.5, 10 or 50, CPS was increased by up to
6% for SA, on the one hand, and reduced by up to 5% for BP, on the other, compared
with the main value (1).

» When we avoided the over-the-top extrapolation of the generated load values, CPS
was reduced by up to 7%.

» When we modified the performance functions so they were linear and concave,
CPS was reduced by up to 3% compared with monotonically increasing ones.
» When we modified the Pareto index, CPS was reduced by up to 6% for a Pareto

index of 0.8 and increased by up to 1% for an index of 1.3, compared with the main
index (1.1).
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Validation (3)

\4

We also modified the number of clients that can change their bundle.

» The average CPS was not affected when 384 (or less) clients changed their bundle at
once.

» When more than 256 clients changed their bundle, however, the results fluctuated.
» When more than 384 clients changed their bundle, the results failed to converge.

» Throughout the above-mentioned modifications, this ratio turned out higher than in
the main results presented earlier.
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