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Improve Utilization

I Cloud providers aim to make more money off the same hardware
I Rigid allocation prevents optimal resource utilization

Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. “Stochastic Resource Allocation”. In: Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE ’19). USENIX Association. Providence, RI,
USA: ACM, 2019. ISBN: 978-1-4503-6020-3/19/04
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Elastic Allocation

Introducing Amazon EC2 T3 Instances
Posted On: Aug 21, 2018
Amazon Web Services (AWS) is introducing the next
generation Amazon Elastic Compute Cloud (EC2) 
burstable general-purpose instances, T3. T3 instances 
offer a balance of compute, memory, and network 
resources and are designed to provide a baseline level 
of CPU performance with the ability to burst above the 
baseline when needed. T3 instances are powered by the 
AWS Nitro System which includes a lightweight 
hardware-accelerated hypervisor, delivering practically  


https://aws.amazon.com/about-aws/whats-new/2018/08/introducing-amazon-ec2-t3-instances I Burstable performance offers CPU elasticity

I Clients can "burst" to a higher level when required
I Allow changing resource consumption on the fly
I Exploiting resources that are momentarily unused by others

I More clients can be allocated to the same physical servers
Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. “Stochastic Resource Allocation”. In: Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE ’19). USENIX Association. Providence, RI,
USA: ACM, 2019. ISBN: 978-1-4503-6020-3/19/04
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Memory is the New Bottleneck

I Memory is the new bottleneck
I It is an expensive resource that limits machine occupancy

I Memory elasticity schemes should be a natural extension to CPU
elasticity
I Allowing clients to use more memory in the same VM/container than

their initial memory allocation
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Memory Elastic Applications

I Applications that can burst

I Whose performance is proportional to their memory usage
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Memory Elastic Applications Exists?
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I Memory-elastic applications are scarce
I Maximal memory footprint is dictated by the current application workload

I The OS’s swapping allows seamless application operation
I Even a minor memory loss may degrade the performance significantly
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Where are the Memory Elastic Applications?

? I Why most applications can scale with CPU?
But not for memory?

I Multi-core architectures and CPU schedulers were the
incentive
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Circular Dependency

Making applications
memory elastic

Developing memory
elasticity systems

Eva
luatio

n requires benchmarks

Putting effort requires inc
enti

ve

L. Funaro, O. Agmon Ben-Yehuda, A. Schuster (Technion) Memory Elasticity Benchmark 8 / 26



Applications with Resource Trade-off

I Mechanisms that were designed to allow trade-off between memory and other
resources can be used to provide memory elasticity
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Memory as Cache

Applications that use the RAM to cache computation results, network
traffic, and so on (e.g., using Memcached)

I Improve cache hit-rate when more memory is available to the operating system
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Intermediate Buffers

Applications that use intermediate buffers (e.g., Hadoop, Spark)

I Can use larger memory buffers to reduce disk access and speed up temporarily
data-heavy operations
I E.g., sorting and large matrix multiplication
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Garbage Collected Memory

Applications with automatic memory management (e.g., Java
applications)

I May need fewer garbage-collection cycles with a larger heap, and improve their
performance
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Multiple Short-Lived Jobs

Applications that have multiple short-lived jobs, each with different
memory requirements (e.g., Nginx)

I Web servers might require a certain memory to handle each session
I They may be able to handle more concurrent sessions when more memory is

available
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Memory-Aware Applications

I Memory-aware applications adjust their memory consumption according to the
available memory observed during their initiation period
I But cannot adjust it during runtime

I Most of the commonly used memory trade-offs we mentioned are predefined and
implemented as memory-aware applications

I Can be made memory-elastic by restarting them when the memory changes
I Not suitable when the application needs to be continuously available

I With a small effort, these applications can be tweaked to become memory-elastic
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Tweaked Memcached

Elastic memcached supports changing its memory footprint
upon receiving a command via a socket

L. Funaro, O. Agmon Ben-Yehuda, A. Schuster (Technion) Memory Elasticity Benchmark 15 / 26



Naive Metric
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I Compare the performance of two applications under the same dynamic memory
conditions and consider the one with the better results as more memory-elastic

I The results may be sensitive to the order or frequency of memory allocations
I This is because we try to infer memory elasticity from observations of metrics that

only hint about elasticity, but do not measure it directly
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Our Goal

I Our goal is
I To quantify an application’s behavior in a dynamic memory scenario
I To compare it to other applications
I Using metrics that directly relate to memory elasticity
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Static Metrics

I Static memory→performance function (Pmem) that describes the performance of
the application given a static memory allocation

I Elasticity domain: [memL,memH ]

I Elasticity range: memH −memL
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Memcached Static Metrics

I Elasticity domain: from 1 GB to 3.5 GB
I Elasticity range: 2.5 GB
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Dynamic Metrics
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Performance Loss During the Transient Period (1)
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Performance Loss During the Transient Period (2)
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Performance Loss During the Transient Period (3)
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Elastic Memcached Average Measured Emem
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Elastic vs. Off-the-shelf Memcached

Elastic Off-the-shelf
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Conclusions
I We showed a few major building blocks that can be made memory elastic

I Cache, intermediate buffers, garbage-collection and schedulers
I We defined metrics that are comparable across applications

I Elasticity range and Emem

I We defined characteristics that can be used by clients to configure their virtual
machine and their application in a memory elastic cloud environment
I Pmem and Tmem

I Our framework is available from
github.com/liran-funaro/elastic-benchmarks

Liran Funaro: funaro@cs.technion.ac.il
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